Biological SciencesBloggerArchived

Getting Genetics Done

Getting Things Done in Genetics & Bioinformatics Research
Home Page
language
Published
Author Stephen Turner

I work with gene lists on a nearly daily basis. Lists of genes near ChIP-seq peaks, lists of genes closest to a GWAS hit, lists of differentially expressed genes or transcripts from an RNA-seq experiment, lists of genes involved in certain pathways, etc. And lots of times I’ll need to convert these gene IDs from one identifier to another. There’s no shortage of tools to do this. I use Ensembl Biomart.

Published
Author Stephen Turner

I just returned from the Genome Informatics meeting at Cold Spring Harbor. This was, hands down, the best scientific conference I've been to in years. The quality of the talks and posters was excellent, and it was great meeting in person many of the scientists and developers whose tools and software I use on a daily basis.

Published
Author Unknown

Per tradition, Russ Altman gave his "Translational Bioinformatics: The Year in Review" presentation at the close of the AMIA Joint Summit on Translational Bioinformatics in San Francisco on March 26th.  This year, papers came from six key areas (and a final Odds and Ends category).  His full slide deck is available here.

Published
Author Stephen Turner

Last week I taught a three-hour introduction to R workshop for life scientists at UVA's Health Sciences Library. I broke the workshop into three sections: In the first half hour or so I presented slides giving an overview of R and why R is so awesome. During this session I emphasized reproducible research and gave a demonstration of using knitr + rmarkdown in RStudio to produce a PDF that can easily be recompiled when data updates.

Published
Author Stephen Turner

I've been asked a few times how to make a so-called volcano plot from gene expression results. A volcano plot typically plots some measure of effect on the x-axis (typically the fold change) and the statistical significance on the y-axis (typically the -log10 of the p-value). Genes that are highly dysregulated are farther to the left and right sides, while highly significant changes appear higher on the plot.