QuímicaInglêsWordPress

Henry Rzepa's Blog

Henry Rzepa's Blog
Chemistry with a twist
Pagina inicialFeed Atom
language
Crystal_structure_miningInteresting ChemistryQuímicaInglês
Publicados

An earlier post investigated large anomeric effects involving two oxygen atoms attached to a common carbon atom. A variation is to replace one oxygen by a nitrogen atom, as in N-C-O. Shown below is a scatter plot of the two distances to the common carbon atom derived from crystal structures. You can see some entries for which the C-O bond length is shorter than normal and the C-N distance very much longer than normal;

Interesting ChemistryQuímicaInglês
Publicados

The homologous hydrocarbon series R 4 C is known for R=Me as neopentane and for R=Et as 3,3-diethylpentane. The next homologue, R=* i *Pr bis(3,3-isopropyl)-2,4-dimethylpentane is also a known molecule[cite]10.1002/1521-3773(20010105)40:1%3C180::AID-ANIE180%3E3.3.CO;2-B[/cite] for which a crystal structure has been reported (DOI: https://doi.org/10.5517/cc4wvnh). The final member of the series, R= t butyl is unknown.

Crystal_structure_miningInteresting ChemistryQuímicaInglês
Publicados

Whilst I was discussing the future of scientific publication in the last post, a debate was happening behind the scenes regarding the small molecule cyclopropenylidene. This is the smallest known molecule displaying π-aromaticity, but its high reactivity means that it is unlikely to be isolated in the condensed phase.

Crystal_structure_miningQuímicaInglês
Publicados

In the earlier post on the topic of anomeric effects, I identified a number of outliers associated with large differences in the lengths of two carbon-oxygen bonds sharing a common carbon atom. Here is another of these outliers (MUZZIS[cite]10.1107/S2056989016002899[/cite]) which shows equally unusual properties.

Curly ArrowsReaction MechanismQuímicaInglês
Publicados

In another post, a discussion arose about whether it might be possible to trap cyclopropenylidene to form a small molecule with a large dipole moment. Doing so assumes that cyclopropenylidene has a sufficiently long lifetime to so react, before it does so with itself to e.g. dimerise.

Crystal_structure_miningQuímicaInglês
Publicados

The classic anomeric effect operates across a carbon atom attached to oxygens. One (of the two) lone pairs on the oxygen can donate into the σ* orbital of the C-O of the other oxygen ( e.g. the red arrows) tending to weaken that bond whilst strengthening the donor oxygen C-O bond. Vice versa means e.g. the blue arrows weakening the other C-O bond.

Interesting ChemistryQuímicaInglês
Publicados

From the last few posts here, you might have noticed much discussion about how the element carbon might sustain a quadruple bond. The original post on this topic from some years ago showed the molecular orbitals of the species CN + , which included two bonding π-types and a low lying nodeless bonding σ-orbital, all with double occupancies and adding up to a triple bond.

Crystal_structure_miningInteresting ChemistryQuímicaInglês
Publicados

I noted in an earlier post the hypothesized example of (CO) 3 Fe⩸C[cite]10.1039/d0cp03436c[/cite] as exhibiting a carbon to iron quadruple bond and which might have precedent in known five-coordinate metal complexes where one of the ligands is a “carbide” or C ligand. I had previously mooted that the Fe⩸C combination might be replaceable by an isoelectronic Mn⩸N pair which could contain a quadruple bond to the nitrogen.

Interesting ChemistryQuímicaInglês
Publicados

The proposed identification of molecules with potential metal to carbon quadruple bonds, in which the metal exhibits trigonal bipyramidal coordination rather than the tetrahedral modes which have been proposed in the literature[cite]10.1039/d0cp03436c[/cite],[cite]10.1039/d1cp00598g[/cite],[cite]10.1021/acs.jpclett.9b03484[/cite] leads on to asking whether simple trigonal coordination at the metal can also sustain this theme?