Kimya BilimleriİngilizceWordPress

Henry Rzepa's Blog

Henry Rzepa's Blog
Chemistry with a twist
Ana SayfaAtom Besleme
language
Crystal_structure_miningAsymmetric HydrogenationBenzeneBenzoElectrophileKimya Bilimleriİngilizce
Yayınlandı

This is a follow-up to the post on exploring the directing influence of (electron donating) substituents on benzene[cite]10.1021/acs.jchemed.5b00346[/cite] with the focus on heteroaromatic rings such indoles, pyrroles and group 16 analogues (furans, thiophenes etc). The search query is shown above (and is available here[cite]10.14469/hpc/665[/cite]). As before, the distance is compared from an electrophile, modelled as

Chemical ITCrystal_structure_miningEsterFunctional GroupsInfra-RedKimya Bilimleriİngilizce
Yayınlandı

In this post, I pondered upon the C=O infra-red spectroscopic properties of esters, and showed three possible electronic influences: The red (and blue) arrows imply the C-O bond might shorten and the C=O bond would lengthen; the green the reverse. So time for a search of the crystal structure database as a reality check.

Crystal_structure_miningAlkeneAlkene-metal ComplexAlkyneBond LengthKimya Bilimleriİngilizce
Yayınlandı

Previously, I looked at the historic origins of the so-called π-complex theory of metal-alkene complexes. Here I follow this up with some data mining of the crystal structure database for such structures. Alkene-metal "π-complexes" have what might be called a representational problem; they do not happily fit into the standard Lewis model of using lines connecting atoms to represent electron pairs.

Crystal_structure_miningChemical PhenomenaData MiningEquivalent SearchHalogenKimya Bilimleriİngilizce
Yayınlandı

A while ago, I explored how the 3-coordinate halogen compound ClF 3 is conventionally analyzed using VSEPR (valence shell electron pair repulsion theory). Here I (belatedly) look at other such tri-coordinate halogen compounds using known structures gleaned from the crystal structure database (CSD). The search query specifies 7A as the central atom, defined with just three bonded (non-metallic) atoms.

Chemical ITCountry: Svalbard And Jan MayenCrossrefHead Of Information ResourcesHTMLKimya Bilimleriİngilizce
Yayınlandı

The title might give it away; this is my 500th blog post, the first having come some eight years ago. Very little online activity nowadays is excluded from measurement and so it is no surprise that this blog and another of my "other" scholarly endeavours, viz publishing in traditional journals, attract such "metrics" or statistics.

Chemical ITCrystal_structure_miningAnomerAnomeric EffectCarbohydrate ChemistryKimya Bilimleriİngilizce
Yayınlandı

This is a follow-up to one aspect of the previous two posts dealing with nucleophilic substitution reactions at silicon. Here I look at the geometries of 5-coordinate compounds containing as a central atom 4A = Si, Ge, Sn, Pb and of the specific formula C 3 4AO 2 with a trigonal bipyramidal geometry.

Reaction MechanismBrook RearrangementEnergyFree EnergyLeaving GroupKimya Bilimleriİngilizce
Yayınlandı

In the previous post, I explored the mechanism for nucleophilic substitution at a silicon centre proceeding via retention of configuration involving a Berry-like pseudorotation. Here I probe an alternative route involving inversion of configuration at the Si centre.

Reaction MechanismBerry MechanismElimination ReactionEnergyEnergy BarrierKimya Bilimleriİngilizce
Yayınlandı

The substitution of a nucleofuge (a good leaving group) by a nucleophile at a carbon centre occurs with inversion of configuration at the carbon, the mechanism being known by the term S N 2 (a story I have also told in this post). Such displacement at silicon famously proceeds by a quite different mechanism, which I here quantify with some calculations.

Chemical ITAcademic PublishingChemical IdentifiersChemical Names and Chemical TermsChemical Tagger PageKimya Bilimleriİngilizce
Yayınlandı

I occasionally post about "RDM" (research data management), an activity that has recently become a formalised essential part of the research processes. I say recently formalised, since researchers have of course kept research notebooks recording their activities and their data since the dawn of science, but not always in an open and transparent manner.

Chemical ITCrystal_structure_miningBasesBürgi–Dunitz AngleCarbonylKimya Bilimleriİngilizce
Yayınlandı

I have previously commented on the Bürgi–Dunitz angle, this being the preferred approach trajectory of a nucleophile towards the electrophilic carbon of a carbonyl group. Some special types of nucleophile such as hydrazines (R 2 N-NR 2 ) are supposed to have enhanced reactivity[cite]10.1016/S0040-4020(01)93101-1[/cite] due to what might be described as buttressing of adjacent lone pairs.

Interesting ChemistryDielectricEnergyEquilibrium ChemistryFluoridesKimya Bilimleriİngilizce
Yayınlandı

The autoionization of water involves two molecules transfering a proton to give hydronium hydroxide, a process for which the free energy of reaction is well known. Here I ask what might happen with the next element along in the periodic table, F. I have been unable to find much about the autoionization of HF in the literature;