Kimya BilimleriİngilizceWordPress

Henry Rzepa's Blog

Henry Rzepa's Blog
Chemistry with a twist
Ana SayfaAtom Besleme
language
Interesting ChemistryΠ-hydrogen Bonded SystemsΠ-systemsKimya Bilimleriİngilizce
Yayınlandı

In this post, I looked at some hydrogen bonds formed by interaction of a π-system with an acidic hydrogen. Unlike normal lone pair donors, π-systems can involve more than two electrons, most commonly four or six. Here I look at examples of both these higher-order donors. FIMNEU FIMNEU.

Interesting ChemistryHigher EnergyHistoricalΠ-complexPericyclicKimya Bilimleriİngilizce
Yayınlandı

The benzidine rearrangement is claimed to be an example of the quite rare [5,5] sigmatropic migration[cite]10.1021/ja00335a035[/cite], which is a ten-electron homologation of the very common [3,3] sigmatropic reaction ( e.g. the Cope or Claisen). Some benzidine rearrangements are indeed thought to go through the [3,3] route[cite]10.1021/ja00309a041[/cite]. The topic has been reviewed here[cite]10.1002/poc.610020702[/cite]. In

Interesting ChemistryEnergy GapKimya Bilimleriİngilizce
Yayınlandı

A simple correlation between a ring size and the hydrogen bonding as quantified by the O(Lp)/H-O σ* NBO interaction in that ring, indicated a 7- or 8-membered ring was preferred over smaller ones. Here is the same study, but this time using the π-electrons of an alkene as the electron donor. n  E(2), kcal/mol  O…H length, Å

Interesting ChemistryCambridgeEnergyEnergy GapInteraction EnergyKimya Bilimleriİngilizce
Yayınlandı

One frequently has to confront the question: will a hydrogen bond form between a suitable donor (lone pair or π) and an acceptor? One of the factors to be taken into consideration for hydrogen bonds which are part of a cycle is the ring size. Here I explore one way of quantifying the effect for the series below, n=1-5 (4-8 membered rings). I will use the NBO approach.

Interesting ChemistryCatalysisConformational AnalysisEnergyEpoxide ProductKimya Bilimleriİngilizce
Yayınlandı

I return to this reaction one more time. Trying to explain why it is enantioselective for the epoxide product poses peculiar difficulties. Most of the substituents can adopt one of several conformations, and some exploration of this conformational space is needed. Amongst the conformational possibilities are the two rotations shown below.

Interesting ChemistryPericyclicReaction MechanismDispersion EnergyFree EnergyKimya Bilimleriİngilizce
Yayınlandı

I have written earlier about dihydrocostunolide, and how in 1963 Corey missed spotting the electronic origins of a key step in its synthesis.[cite]10.1021/ja00952a037[/cite]. A nice juxtaposition to this failed opportunity relates to Woodward’s project at around the same time to synthesize vitamin B12. The step in the synthesis that caused him to ponder is shown below.

Interesting ChemistryAsymmetric Catalytic SystemsBob HansonCatalysisJulia Contreras-GarciaKimya Bilimleriİngilizce
Yayınlandı

The Sharpless epoxidation of an allylic alcohol had a big impact on synthetic chemistry when it was introduced in the 1980s, and led the way for the discovery (design?) of many new asymmetric catalytic systems. Each achieves its chiral magic by control of the geometry at the transition state for the reaction, and the stabilizations (or destabilizations) that occur at that geometry.