
Integrating temporal data into static knowledge graphs
Integrating temporal data into static knowledge graphs
Techniques to integrate Knowledge Graphs into Language Models
Definition A research collaboration network is a group of researchers, and practitioners, or both, working together on joint research activities.
Understanding Sequential Data Modelling with Keras for Time Series Prediction Author Wenyi Pi ( ORCID : 0009–0002–2884–2771) Introduction Recurrent Neural Networks (RNNs) are a special type of neural networks that are suitable for learning representations of sequential data like text in Natural Language Processing (NLP). We will walk through a complete example of using RNNs for time series prediction, covering
Understanding the Power and Applications of Natural Language Processing Author Dhruv Gupta ( ORCID: 0009–0004–7109–5403) Introduction We are living in the era of generative AI. In an era where you can ask AI models almost anything, they will most certainly have an answer to the query. With the increased computational power and the amount of textual data, these models are bound to improve their performance.
Latest findings in multiple research directions for handling graph construction and network security issues
Incorporating Knowledge Graphs to explain reasoning processes
Bridging Human Perception and AI’s Future: The Convergence of Visual Understanding and Semantic Networks
Prompt Engineering — Part 2 Using intelligence to use artificial Intelligence: A deep dive into Prompt Engineering Author Dhruv Gupta (ORCID: 0009–0004–7109–5403 ) Introduction In the previous article we discussed what prompt engineering and some of the techniques used for prompt engineering.
Understanding how RNNs work and its applications Author Wenyi Pi ( ORCID : 0009–0002–2884–2771) Introduction In the ever-evolving landscape of artificial intelligence (AI), bridging the gap between humans and machines has seen remarkable progress. Researchers and enthusiasts alike have tirelessly worked across numerous aspects of this field, bringing about amazing advancements.
Solutions to Enhance LLM Performance in Long Contexts Author · Qingqin Fang ( ORCID: 0009–0003–5348–4264) Introduction In the era of AI breakthroughs, large language models (LLMs) are not just advancements; they are revolutions, transforming how we interact with technology, from casual conversations with chatbots to the intricate mechanisms behind sophisticated data analysis tools.