MathématiquesAnglaisHugo

Math ∩ Programming

Recent content on Math ∩ Programming
Page d'accueilFlux RSSMastodon
language
MathématiquesAnglais
Publié
Auteur Jeremy Kun

Last time we investigated the (very unintuitive) concept of a topological space as a set of “points” endowed with a description of which subsets are open. Now in order to actually arrive at a discussion of interesting and useful topological spaces, we need to be able to take simple topological spaces and build them up into more complex ones.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Problem: Prove there are infinitely many primes Solution: Denote by $ \pi(n)$ the number of primes less than or equal to $ n$. We will give a lower bound on $ \pi(n)$ which increases without bound as $ n \to \infty$. Note that every number $ n$ can be factored as the product of a square free number $ r$ (a number which no square divides) and a square $ s^2$.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

In our last primer we looked at a number of interesting examples of metric spaces, that is, spaces in which we can compute distance in a reasonable way. Our goal for this post is to relax this assumption. That is, we want to study the geometric structure of space without the ability to define distance.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Last time we investigated the k-nearest-neighbors algorithm and the underlying idea that one can learn a classification rule by copying the known classification of nearby data points. This required that we view our data as sitting inside a metric space; that is, we imposed a kind of geometric structure on our data. One glaring problem is that there may be no reasonable way to do this.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Numberphile posted a video today describing a neat trick based on complete sequences: The mathematics here is pretty simple, but I noticed at the end of the video that Dr. Grime was constructing the cards by hand, when really this is a job for a computer program. I thought it would be a nice warmup exercise (and a treat to all of the Numberphile viewers) to write a program to construct the cards for any complete sequence.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Problem: Prove there are infinitely many prime numbers. Solution: First recall that an arithmetic progression with difference $ d$ is a sequence of integers $ a_n \subset \mathbb{Z}$ so that for every pair $ a_k, a_{k+1}$ the difference $ a_{k+1} – a_k = d$. We proceed be defining a topology on the set of integers by defining a basis $ B$ of unbounded (in both directions) arithmetic progressions.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

This post comes in preparation for a post on decision trees (a specific type of tree used for classification in machine learning). While most mathematicians and programmers are familiar with trees, we have yet to discuss them on this blog. For completeness, we’ll give a brief overview of the terminology and constructions associated with trees, and describe a few common algorithms on trees.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

The Recipe for Classification One important task in machine learning is to classify data into one of a fixed number of classes. For instance, one might want to discriminate between useful email and unsolicited spam. Or one might wish to determine the species of a beetle based on its physical attributes, such as weight, color, and mandible length.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

The Blessing of Distance We have often mentioned the idea of a “metric” on this blog, and we briefly described a formal definition for it. Colloquially, a metric is simply the mathematical notion of a distance function, with certain well-behaved properties.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

A Series on Machine Learning These days an absolutely staggering amount of research and development work goes into the very coarsely defined field of “machine learning.” Part of the reason why it’s so coarsely defined is because it borrows techniques from so many different fields. Many problems in machine learning can be phrased in different but equivalent ways.