MathématiquesAnglaisHugo

Math ∩ Programming

Recent content on Math ∩ Programming
Page d'accueilFlux RSSMastodon
language
MathématiquesAnglais
Publié
Auteur Jeremy Kun

This post assumes familiarity with the terminology and notation of linear algebra, particularly inner product spaces. Fortunately, we have both a beginner’s primer on linear algebra and a follow-up primer on inner products. The Quest We are on a quest to write a program which recognizes images of faces. The general algorithm should be as follows. Get a bunch of sample images of people we want to recognize.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Vector spaces alone are not enough to do a lot of the interesting things we’d like them to do. Since a vector space is a generalization of Euclidean space, it is natural for us to investigate more specific types of vector spaces which are more akin to Euclidean space. In particular, we want to include the notion of a dot product.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

We present a video on Möbius transformations and the geometry of the sphere. Anyone who has taken or will take complex analysis (that means you engineers!) should watch this. It shows not only the beautiful correspondence between the two, but it reveals the intuition behind a lot of complex analysis, when more often than not a student is left in the dust of rigorous formulas.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

“Tonight’s the Night” A large volume of research goes into the psychological and behavioral analysis of criminals. In particular, serial criminals hold a special place in the imagination and nightmares of the general public (at least, American public). Those criminals with the opportunity to become serial criminals are logical, cool-tempered, methodical, and, of course, dangerous.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

It seems that false proofs are quickly becoming some of the most popular posts on Math ∩ Programming. I have been preparing exciting posts on applications of graph coloring, deck stacking, and serial killers. Unfortunately, each requires resources which exist solely on my home desktop, which is currently dismantled in California while I am on vacation in Costa Rica.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Problem: Show that all horses are of the same color. “Solution”: We will show, by induction, that for any set of $ n$ horses, every horse in that set has the same color. Suppose $ n=1$, this is obviously true. Now suppose for all sets of $ n$ horses, every horse in the set has the same color. Consider any set $ H$ of $ n+1$ horses. We may pick a horse at random, $ h_1 \in H$, and remove it from the set, getting a set of $ n$ horses.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

How many colors are required to color the provinces of Costa Rica? A common visual aid for maps is to color the regions of the map differently, so that no two regions which share a border also share a color. For example, to the right is a map of the provinces of Costa Rica (where the author is presently spending his vacation). It is colored with eight different colors, one for each province.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Problem: Suppose their are three circles in the plane of distinct radii. For any two of these circles, we may find their center of dilation as the intersection point of their common tangents. For example, in the following picture we mark the three centers of dilation for each pair of circles: We notice that the three centers of dilation are collinear. Show they are always collinear for any three non-intersecting circles of distinct radii.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

A Puzzle is Born Sitting around a poolside table, in the cool air and soft light of a June evening, a few of my old friends and I played a game of Texas Hold ‘Em. While we played we chatted about our times in high school, of our old teachers, friends, and, of course, our times playing poker.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

It’s often that a student’s first exposure to rigorous mathematics is through set theory, as originally studied by Georg Cantor. This means we will not treat set theory axiomatically (as in ZF set theory), but rather we will take the definition of a set for granted, and allow any operation to be performed on a set. This will be clear when we present examples, and it will be clear why this is a bad idea when we present paradoxes.

MathématiquesAnglais
Publié
Auteur Jeremy Kun

Problem: Show 31.5 = 32.5. “Solution”: Explanation: It appears that by shifting around the pieces of one triangle, we have constructed a second figure which covers less area!